
Using SAS® and Other Tools to Move an Institutional Research (IR)
Office from Hardcopy Reporting to a Web-Based Environment

Sabrina Andrews, University of Central Florida, Orlando, FL
Evangeline Collado, University of Central Florida, Orlando, FL

Patricia Ramsey, University of Central Florida, Orlando, FL

ABSTRACT
At a minimum, university constituents want timely and accurate
data. The focus now is the demand for user-friendly reporting.
More specifically, in today’s fast-paced, technology-enhanced
world, users want a friendly, web-reporting environment. As these
demands increase, it presents challenges for the IR office. At the
University of Central Florida (UCF), a major metropolitan
university, we are meeting some of these challenges by
converting legacy-based reports into dynamic and interactive Web
applications using SAS® tools, specifically SAS/IntrNet®, and
other desktop applications.

We will demonstrate two applications:

• The Enrollment Profile uses SAS/IntrNet, Base SAS,
SAS/GRAPH, SAS/Macro Language, HTML,
JavaScript, and Microsoft Access to provide the
university community with current and historical student
enrollment headcount information.

• The Course Registration Profile uses the above tools
and SAS/ACCESS to Oracle to provide the university
administrative personnel, faculty, and staff with near-
live course registration data during registration periods.
Historical data are maintained for trend comparisons
with previous year’s data.

WHO WE ARE

MISSION
The mission of the Office of Institutional Research (IR) is to
support planning, decision-making, and assessment at the
University of Central Florida by providing information that is timely
and of the highest quality.

PURPOSE
The IR office is a service-oriented unit that provides information
and proposes alternative solutions to support the decision-making
process. The purposes of the Office of Institutional Research are
to assist in the organization and maintenance of institutional data
for decision-making, to analyze and interpret data, to provide
information which is appropriate and useful in planning and
decision-making, and to serve as a catalyst for institutional self
analysis and improvement. The director and staff serve on
numerous university-wide committees and workgroups and assist
with the collection and interpretation of institutional data, assist in
planning academic programs, and participate in the
implementation of evaluative procedures. The functions of the
office support the entire university enterprise.

BACKGROUND
The Office of Institutional Research (IR) has, as one of its primary
responsibilities, the task of reporting all official data to internal and
external constituents. Staff from the IR office routinely meet with
end users and participate in workgroups and committees that deal
with data needs and information access. This allows us the
opportunity to interact directly with end users and determine, one-
on-one, exactly what their data needs are and the format that
would best meet their needs. This also has the added benefit of
allowing IR staff to more immediately respond to needs and make
changes to our new dynamic applications as they are requested.

INTRODUCTION
Throughout the year, numerous official data files and hard copy

reports are produced. What we have found very recently is a
trend that end-users want more and more data in varying formats.
The legacy-based programs are cumbersome to change and the
hard copy reports may not be as functional as the user needs.
Having a more sophisticated and flexible reporting tool such as
SAS/IntrNet has allowed the IR office to better respond to user’s
data and information needs.

UCF has been using SAS in the classroom for many years. Thus,
IR was able to utilize the SAS knowledge of a member of the
Statistics & Actuarial Science Department—Dr. Morgan Wang,
Director of the SAS Data Mining Certificate program at UCF. With
the assistance of several of his graduate students we began to
explore applications built on SAS technology because of the
ability to dynamically create and display tables and graphs or
charts on the web. As a result of senior level administrators
wanting more timely and easily accessible data it was decided
that the IR office would lead an effort to use SAS in an
“administrative capacity.” Two applications were prototyped and
will be discussed in this paper.

ENROLLMENT PROFILE
The Enrollment Profile site was originally conceived as a way for
the IR office to be able to immediately respond to (daily)
enrollment questions during key times of the year. The IR office
was always the source for enrollment data and, before we had the
capability to produce the data dynamically from a daily update
process, we would have to wait until a hard copy printed out (often
a day or two after the request was made). Since our census data
file is not submitted until 6 weeks into the term, you can see
where earlier data needed to be provided.

HARDCOPY REPORTING
Several hardcopy enrollment reports for each college and/or
school at UCF are produced for each of an academic year’s
semesters—summer, fall and spring. A page of one hard to read,
multiple-page report is shown in Figure 1. These reports were
written in COBOL and are difficult to program and redesign.
Based on space limitations, adding columns or rows would pose
some challenges. One department may have 30, 40, or 50 pages
in one reporting term and there are more than 60 departments at
UCF. Thus, physical storage room to house these catalogued
reports is at a premium and, if a college wanted to collect
historical information for each of its departments, it would take a
tremendous amount of time and effort just to photocopy that many
pages. This prompted us to look for a better way to provide this
information.

Figure 1: OCR-B2 Student Enrollment Survey Report

MOVEMENT FROM HARDCOPY REPORTING
In an attempt to make enrollment information more easily
accessible to the UCF community and the general public, the IR
office began creating MS Excel files for display on the web. Thus,
each semester when the reports are printed, IR’s webmistress
manually creates spreadsheets that could then be accessed from
the IR website and downloaded to a local machine. Figure 2
shows the web display of the report shown in Figure 1. A PDF file
is also created manually for ease of printing. This process is
repeated twice for the fall and spring semesters, as first a
preliminary report is created and then a final report, and once for
the summer semester. Although the IR office is now able to
provide enrollment information to the masses, it is an extremely
labor-intensive process to maintain these types of data sets and
static web reports. Also, the type of information provided is
limited; therefore, not all of the university’s data needs are being
met. Thus, what we need is a true dynamic web-based reporting
environment.

Figure 2. MS Excel Web View of Headcount Report

DYNAMIC WEB-BASED ENVIRONMENT
The decision was made to advance to a dynamic environment
that provides information on student headcount enrollments in a
myriad of different ways. For example, this application shows
enrollments by college, undergraduate/graduate, full-time/part-
time status, gender, ethnicity, classification and major in a drill-
down fashion. For new students, headcount by student type is
available at either the undergraduate or graduate level. This
website was designed to replace and enhance numerous hard
copy reports and be accessible via the web in a user-friendly,
dynamic and interactive environment.

DATA ACQUISITION PROCESS
Using an Open DataBase Connectivity (ODBC) connection and a
tool named Shadow Direct to access the student enrollment data
on the mainframe, the data is brought into an MS Access

database. Then SAS/ACCESS to PC File Formats is used to
import the data into a permanent SAS data set. For the current
term this process is repeated daily using “Windows Scheduled
Tasks” to run two batch programs. The first program runs an MS
Access macro to update the database, whereas, the second
program runs a SAS program to import the data for use by the
application. Historical data is captured in a similar fashion each
time a new file is submitted to the state board of education.

RunAccess.bat
"C:\Program Files\Microsoft Office\Office\MSACCESS.EXE"
C:\Enrollment\Database\Enrollment.mdb /x Student

RunSAS.bat
"C:\Program Files\SAS Institute\SAS\V8\sas.exe" -sysin
C:\Enrollment\Database\importstudent.sas

import.sas

options sasautos='C:\Enrollment';
libname enroll 'C:\Enrollment\Database';
PROC IMPORT OUT= ENROLL.SUMMER03
 DATATABLE= "Coded Students"
 DBMS=ACCESS2000 REPLACE;
 DATABASE="C:\Enrollment\Database\

Enrollment.mdb";
RUN;

DEMONSTRATION
The following screen shots are a small representation of what is
available on the Enrollment Profile site. Some of the SAS
programs that produce these pages are very lengthy and,
therefore, will not be reproduced in their entirety. Samples of
code will be provided for key items or ideas.

Figure 3 shows the home page of the Enrollment Profile site.
Instead of an HTML form, a SAS program is used to calculate the
percentage difference and display a horizontal bar chart created
using the Java device driver. The macro variables used in the
program are passed in the URL as name/value pairs:
http://www.irweb2.ucf.edu/scripts/broker.exe?_service=beta&_pro
gram=enroll.headcount.sas&_debug=0. A portion of
“headcount.sas” shows how the options are set for SAS/GRAPH.

/*Set options for graph output device*/
goptions reset=all
 device=java
 border
 xpixels=525
 ypixels=110
 cback=white;

/*Set colors for graphs*/
pattern1 c=cx0000A0;
pattern2 c=cx800040;

/*Set axis options*/
axis1 label=none minor=(n=4);
axis2 label=none;

/*Tell SAS to output chart to the web*/
ods listing close;
ods html body=_webout rs=none
 archive="/sasweb/graph/graphapp.jar"
 attributes=("codebase"="/sasweb/graph")
 parameters=("userfmt1"="value $totfmt
'total1'=&tm &year 'total2'=&tm &preyr");

Figure 3. Home page of Enrollment Profile

Clicking on the “Summer 2003 Detailed Information” button brings
you to the page shown in Figure 4. If you want to view
information from a previous term and/or year, clicking on “Select
Another Semester/Year” provides that option. On this page there
are active links to drill-down deeper into the information. You can
view trends as in Figure 5 by selecting a link under the “Trends”
heading, or clicking a link under the “College” heading will display
Figure 6, which breaks down the headcounts by classification,
gender, undergraduate/graduate, and full-time/part-time status.

The following code makes the dynamic links by creating a format
for the “Trends” and “College” variables that will be used later in
the PROC TABULATE statements.

data acadfmt;
 length label $200;
 set temp(keep=aca acadgrp college);
 retain fmtname 'ACADFMT' type 'C';
 start=aca;
 label=trim('<A
HREF="http://www.irweb2.ucf.edu/scripts/broke
r.exe?'||
'_service=beta&_debug=0&_program=enroll.coll_
trends.sas'||
 '&new='||"&new"||
 '&term='||&term||
 '&hon='||"&hon"||
 '&year='||trim(left(&year))||
 '&college='||trim(college)||'">'||
 trim(acadgrp)||'');
run;

proc format cntlin=ACADFMT;
run;
quit;
data collfmt;
 length label $200;
 set temp(keep=col college college_name);
 retain fmtname 'COLLFMT' type 'C';
 start=col;
 label=trim('<A
HREF="http://www.irweb2.ucf.edu/scripts/broke
r.exe?'||
'_service=beta&_debug=0&_program=enroll.class
_lev_time.sas'||
 '&new='||"&new"||
 '&term='||&term||
 '&hon='||"&hon"||
 '&year='||trim(left(&year))||
 '&college='||trim(college)||'">'||
 trim(college_name)||'');
run;

proc format cntlin=COLLFMT;
run;
quit;

The following portion of code tells SAS to close the output window
and send the procedure output to the web browser.

ods listing close;
ods html body=_webout (notop nobot)
path=&_tmpcat (url=&_replay) rs=none;

The following is a portion of the PROC TABULATE code showing
the format statement.

proc tabulate data=temp format=comma8.
 . . . other SAS statements
 format col $collfmt. aca $acadfmt.;
 . . . other SAS statements
run;

Then we need to stop the output to the browser and re-open the
output window.

ods html close;
ods listing;

Figure 4. Headcount by College

Figure 5 displays enrollment trends for summer semesters over
the 5-yr period from 1998 to 2002. The Java device driver was
used to create this grouped vertical bar chart.

Figure 5. College 5-yr Headcount Trend

There are two sets of active links in Figure 6. The blue links take
you to the output shown in Figure 7 and the black links go to the
glossary where an explanation is given of how we define the fields
for this site.

Figure 6. Headcount by Classification, Gender and Enrollment Status

Figure 7 has dynamically generated links that will display the most
recent 5-yr trend for the chosen major when clicked (Figure 8).

Figure 7. Headcount by Major, Gender, and Enrollment Status

Figure 8. Major 5-yr Headcount Trend

The drop-down menu displayed in Figure 9 is created using
JavaScript and gives the user immediate access to a particular
view without having to drill-down from page to page. Thus, the
functionality is interactive—the users have more control over the

data they specifically want to see. Each page (except the home
page) displays this drop-down menu; thus, a separate macro
program containing the script was written rather than repeat the
same lengthy code in multiple programs.

Figure 9. Interactive Drop-Down Menu

As shown in Figure 10, the same data displayed in Figure 1,
which was manually entered into an MS Excel spreadsheet, is
now dynamically generated and displayed by the click of a
hyperlink.

Figure 10. Dynamically Generated Version of Figure 1

COURSE REGISTRATION PROFILE
Schedulers and course planners at UCF need a way to track daily
course registration such as what courses are being offered, what
the daily enrollments in courses are, who the instructor is, etc. in
order to provide the university with the appropriate offering of
classes. This information changes on a daily basis during the
registration period but the previous day’s data was overwritten.
Thus, there was not a way to track registrations over time, which
would facilitate a decision to open up a new section if needed.

HARDCOPY REPORTING
Legacy reporting can be challenging to work with. Many of our
legacy applications used Customer Information Control System
(CICS) screens, as shown in Figure 11, that are difficult to change
or redesign the views. A specific example is the field length for
FIN ENR is limited to three digits and we now have web-based
courses with enrollments over 1000, so the first digit is chopped
off in the display. Another difficulty is that there is no search
functionality and it can be cumbersome to find information on the
screen.

Figure 11. Master Schedule Information

MOVEMENT FROM HARDCOPY REPORTING
After the university went live with a PeopleSoft Student
Administration system, course planners and other people in the
colleges and departments were having an extremely difficult time
getting any reports containing course schedule information. A
web-based class schedule search application was created (Figure
12), but it didn’t provide all of the information that was available
on the old CICS screens. At the same time, Dr. Taylor Ellis,
Associate Dean of Undergraduate Programs in the College of
Business, was developing a static HTML application using SAS
for his own use to track course registrations. The programs were
run manually and the pages stored on a local machine. Each
semester, course information was manually entered to create the
hyperlinks, which was labor-intensive for the programmer. What
was needed was a tool that would allow anyone access to key
registration data, give users control over what type and level of
information they wanted to see, and not require extensive
maintenance time.

Figure 12. Class Schedule Search Application

DYNAMIC WEB-BASED ENVIRONMENT
The Course Registration Profile is a web-based application that
provides information on course registration based on criteria
selected by the user. Graphical and tabular reports show how
quickly classes are filling up by campus, college, course modality,
undergraduate/graduate, or specific courses(s). Users can drill-
down from course prefix to course number to course section. At
the course and section level, the user can access a plot that
shows course enrollment over time. As time progresses, we
would be able to create historical data files for future trend
comparisons. Much of the same technology used in the
Enrollment Profile, specifically SAS/IntrNet, is used to dynamically
generate the pages and hyperlinks.

DATA ACQUISITION PROCESS
This application needs to display more up-to-date information so it
was decided to access the PeopleSoft data directly, which is

stored in Oracle tables, using SAS/ACCESS to Oracle
technology. During peak registration times the data would be
refreshed 4 times daily so a “Windows Scheduled Task” was
created with multiple running times to run a SAS program.
Throughout the day the data are replaced and the data from the
last run are saved and stored.

RunSASPS.bat
"C:\Program Files\SAS Institute\SAS\V8\sas.exe" -sysin
C:\CourseReg\PSView\Database\getdata.sas

getdata.sas

%macro getdata(daily,all,tmid);
. . . other SAS statements

/*SAS/ACCESS to ORACLE*/
libname ps oracle user=userid
password=password path='data source name';
proc sql;
 create table psreg.&daily as
 select * from ps.PS_CF_CLASS_IR_VW
 where STRM=&tmid and CLASS_NBR ne . and
 CLASS_STAT in ('A','T','S') and
 COMPONENT in
 ('DIS','LAB','LEC','PER','SEM') and
 substring(CATALOG_NBR from 2 for 3)
 not in ('903','904','905','906',
 '907','908','909','912','917','918',
 '919','940','941','944','946','949',
 '957','958','970','971','973','980');
quit;
libname ps clear;

. . . other SAS statements

DEMONSTRATION
Since it was not required to display graphs or provide calculations
on the home page of the Course Registration Profile a standard
HTML form is used to collect the name/value pairs needed to
begin the application. Figure 13 shows the home page where you
can select filters for the information desired. If information for a
specific course is desired, ENC1101 for example, a text box is
present to type in your request.

Figure 13. Home Page of Course Registration Profile

After clicking the submit button on the home page, the next page
(Figure 14) has options to filter the data for a specific department
based on the college selected, term and year selections, an
option to exclude the display of Honors courses, and the ability to
see information for courses where enrollment is at a certain
percentage.

Figure 14. Department and Term Selection

Figure 15 shows the course registration information by course
prefix. SAS/GRAPH generates a pie chart using the GIF driver
and the REPORT procedure generates the tabular display.
Dynamic hyperlinks to drill-down to the next level are generated
as detailed above in the Enrollment Profile. The ANNOTATE
facility is used to generate custom displays for the pie chart. The
ODS MARKUP destination (experimental in Version 8.2) is used
to provide ALT information for the graph to comply with
accessibility standards. There is a hyperlink available to display
all the sections in a list format and another to go to the class
schedule search shown in Figure 12.

proc template;
 define tagset tagsets.test;
 parent=tagsets.chtml;
 define event image;
 put "<img";
 put " border=2 alt=""SAS
 Pie Chart""";
 putq " src=" URL ">" NL;
 end;
 end;
run;

ods listing close;
ods markup tagset=test body=_webout (notop
nobot) path=&_tmpcat (url=&_replay)
style=styles.ucf rs=none;

/*Set Graphics Options*/
goptions reset=all
 device=gif260
 gunit=CELLS
 cback=white
 border
 ftext=swissxb
 ftrack=loose
 htext=1.5;

pattern1 value=psolid color=vlib;
pattern2 value=psolid color=CXFBEAB5;

data annotest;
 length function color style $ 8 text $ 25;
 retain function 'label' color 'black' when
 'a' style 'swissxb' xsys ysys '2'
 position '5' hsys '3' size 5.5;
 set temp3;
 if status='sumenr';
 midpoint=status;
 x=50;

 y=50;
 text=left(put(ratio,percent8.));
 output;
run;

data _null_;
 set temp3;
 if status='sumenr' and ratio>1 then
 call symput('grp','annotate=annotest');
 else
 call symput('grp','percent=outside');
run;

proc gchart data=temp3;
 where number>0;
 format status $statfmt. number comma8.0;
 pie3d status /sumvar=NUMBER
 &grp
 value=outside
 slice=outside
 angle=60
 midpoints='Enrolled'
 'Available'
 nogroupheading
 noheading
 nolegend;
run;
quit;
ods markup close;
ods listing;

Figure 15. Course Registration by Course Prefix

The listing of all sections (Figure 16) is convenient for department
heads who want to see all of a department’s offered courses at
once. However, printing an HTML table can sometimes be
difficult. Sometimes, key information is chopped off at the bottom
or top of the page. A hyperlink is available to dynamically
generate a PDF file using the ODS PDF output destination
available in SAS Version 8.2 (Figure 17). Another hyperlink is
available to serve the temporary data set to the browser, first
exported to an MS Excel file that can be saved on the user’s local
machine for data manipulation (Figure 18). A hyperlink is also
available to display a data dictionary for some of the data fields in
the table.

options orientation=landscape
papersize=letter pageno=1
 leftmargin=.5 rightmargin=.5 topmargin=.5
 bottommargin=.5;
ods listing close;
ods pdf file=_webout style=styles2.ucf
startpage=never;

 ods proclabel "Expanded Course Listing";

%let rc=%sysfunc(appsrv_session(create));
PROC EXPORT DATA=WORK.TEMP
 OUTFILE="C:\CourseReg\PSView\
 temp&_sessionid..xls"
 DBMS=EXCEL2000 REPLACE;
RUN;
put '<a
href="http://www.irweb2.ucf.edu/scripts/broke
r.exe?_service=beta&_program=sashelp.webprog.
filesrv.scl&_filetyp=e&_debug=0&_file=c:\cour
sereg\psview\temp&_sessionid..xls"
target="blank">';

Figure 16. Expanded Listing of All Sections

Figure 17. Dynamically Generated Acrobat PDF

Figure 18. Serve Excel File to Web

Clicking on one of the prefix hyperlinks in Figure 15 will display
registration information by course number for each of the courses
beginning with the prefix selected (Figure 19).

Figure 19. Course Registration by Course Number

The TEMPLATE procedure is used to modify the style for the
tabular display of the REPORT procedure. The following macro is
called prior to the code that produces the table and the style
declaration is added to the ODS HTML statement.

%macro style1;
/*Create style sheet for browser output*/
ods path work.templat(update)
sashelp.tmplmst(read);
proc template;
 define style Styles.UCF;
 parent = styles.default;
 replace fonts

 "Fonts used in the default style" /
 'FooterFont' = ("Verdana, Arial,
 Helvetica, Helv",2,Bold)
 'TitleFont2' = ("Verdana, Arial,
 Helvetica, Helv",2,Bold Italic)
 'TitleFont' = ("Verdana, Arial,
 Helvetica, Helv",3,Bold Italic)
 'StrongFont' = ("Verdana, Arial,
 Helvetica, Helv",2,Bold)
 'EmphasisFont' = ("Verdana, Arial,
 Helvetica, Helv",1,Italic)
 'FixedEmphasisFont' =
 ("Courier",1,Italic)
 'FixedStrongFont' =
 ("Courier",1,Bold)

 'FixedHeadingFont' = ("Courier",1)
 'BatchFixedFont' = ("SAS Monospace,
 Courier",1)
 'FixedFont' = ("Courier",1)
 'headingEmphasisFont' = ("Verdana,
 Arial, Helvetica, Helv",2,Bold
 Italic)
 'headingFont' = ("Tahoma, Arial,
 Helvetica, Helv",2,Bold)
 'docFont' = ("Tahoma, Arial,
 Helvetica, Helv",2);
 replace color_list
 "Colors used in the default style" /
 'fgB2' = cx0000ff
 'fgB1' = cx800040
 'fgA4' = cx000000
 'bgA4' = cxffffff
 'bgA3' = cxffffff
 'fgA2' = cx000000
 'bgA2' = cxffffff
 'fgA1' = cx000000
 'bgA1' = cxffffff
 'fgA' = cx000000
 'bgA' = cxffffff;
 replace colors
 "Abstract colors used in the default
 style" /
 'headerfgemph' = color_list('fgA2')
 'headerbgemph' = color_list('bgA4')
 'footerfgstrong' =
 color_list('fgA2')
 'footerbgstrong' =
 color_list('bgA4')
 'headerfgstrong' =
 color_list('fgA2')
 'headerbgstrong' =
 color_list('bgA4')
 'headerfg' = color_list('fgA2')
 'headerbg' = color_list('bgA2')
 'datafgemph' = color_list('fgA1')
 'databgemph' = color_list('bgA3')
 'datafgstrong' = color_list('fgA1')
 'databgstrong' = color_list('bgA3')
 'datafg' = color_list('fgA1')
 'databg' = color_list('bgA3')
 'batchfg' = color_list('fgA1')
 'batchbg' = color_list('bgA3')
 'tableborder' = color_list('fgA1')
 'tablebg' = color_list('bgA1')
 'notefg' = color_list('fgA1')
 'notebg' = color_list('bgA')
 'bylinefg' = color_list('fgA2')
 'bylinebg' = color_list('bgA')
 'captionfg' = color_list('fgA1')
 'captionbg' = color_list('bgA')
 'proctitlefg' = color_list('fgA')
 'proctitlebg' = color_list('bgA')
 'titlefg' = color_list('fgA')
 'titlebg' = color_list('bgA')
 'systitlefg' = color_list('fgA')
 'systitlebg' = color_list('bgA')
 'Conentryfg' = color_list('fgA')
 'Confolderfg' = color_list('fgA')
 'Contitlefg' = color_list('fgA')
 'link2' = color_list('fgB2')
 'link1' = color_list('fgB1')
 'contentfg' = color_list('fgA2')
 'contentbg' = color_list('bgA2')
 'docfg' = color_list('fgA')
 'docbg' = color_list('bgA');
 style Body from Body /

 pagebreakhtml =
 %nrstr("<p style=""page-break-after:
 always;""> </p><HR size=2>");
 style SystemFooter from SystemFooter /
 foreground = black

 font = fonts('footerFont');
 style FooterStrong from Footer /
 background =
 colors('footerbgstrong');
 replace Output from Container

 "Abstract. Controls basic output
 forms." /
 background = colors('tablebg')
 rules = GROUPS

 frame = BOX
 cellpadding = 7
 cellspacing = 1
 bordercolor = colors('tableborder')
 borderwidth = 1;
 replace RowHeader from Header

 "Controls row headers." /
 foreground = color_list('bgA1');
 end;

run;
%mend style1;

ods html body=_webout (notop nobot)
 style=styles.ucf
 rs=none;

Selecting a course number hyperlink displays each section
offered as shown in Figure 20. Clicking the “Course:” hyperlink will
produce Figure 21.

Figure 20. Course Registration by Course Section

To change the background color of a cell in the REPORT
procedure if certain conditions are met we define a compute
variable named “FYI” and then provide the if-then logic.

 compute FYI /character length=40;
 if (_C6_ < _C7_) and (_C7_ < _C8_) then
 do;
 FYI = "RmCap < ClsLim < RegLim";
 call define(_COL_,"STYLE",
 "style(CALLDEF)=
 {background=CXD8D8D8
 foreground=black}");
 call define('_C6_',"STYLE",
 "style(CALLDEF)=
 {background=CXD8D8D8
 foreground=black}");
 call define('_C7_',"STYLE",

 "style(CALLDEF)=
 {background=CXD8D8D8
 foreground=black}");
 call define('_C8_',"STYLE",
 "style(CALLDEF)=
 {background=CXD8D8D8
 foreground=black}");
 end;
 else if _C6_ < _C7_ then
 do;
 similar statements as above
 end;
 else if _C8_ < _C9_ then
 do;
 similar statements as above
 end;
 else
 FYI="";
 endcomp;

PROC GPLOT is used to produce the plot in Figure 21 and the
ANNOTATE facility is used to put the date of registration below
the horizontal axis and to display the numbers above each point.

data annotest;
 length function color style $8 text $10
 position $1;
 retain function 'label' when 'a' xsys '2'
 hsys '3' position '6';
 set temp;
 if number>0 &shw;

 /*Put dates on axis*/
 style='"Arial"'; color='black'; x=day;
 y=4; text=put(prev,mmddyyd8.);
 ysys='3'; angle=90; size=&sz; output;

 /*Label data points with numbers*/
 style='swissb'; color='blue'; x=day;
 y=number; text=put(number,5.);
 ysys='2'; angle=90; size=&dt; output;
run;

A hyperlink is provided to compare the course registration with the
previous year (Figure 22). Two plots, one for the current year and
one for the previous year, are shown using the OVERLAY option
of the PLOT statement. Clicking on “Registration Calendar” will
display Figure 23 and clicking on a course section hyperlink
shown in Figure 20 will produce a plot of course registration over
time for that section (not shown).

Figure 21. Course Registration Over Time for a Specific Section

Figure 22. Trend Comparison with Previous Year

Figure 23. Registration Calendar

CONCLUSION
Constituents at UCF have a strong desire for dynamically
accessible data. New applications were developed to meet user
needs, prototyped to the University of Central Florida community,
and extremely well received. SAS technology, specifically
SAS/IntrNet, has provided the IR office with the tools needed to
deliver timely and accurate data in a user-friendly dynamic web-
based reporting environment. Once the initial programs are built,
there is much less programmer time involved to maintain these
types of applications. The IR office intends to continue the
movement using SAS to develop administrative applications and
serve as a leader in this area of database design and application.

REFERENCES
The following SAS publications were invaluable tools used
extensively during the creation of these two applications.

SAS Institute Inc. (1998), SAS Macro Language, Course Notes,
Cary, NC: SAS Institute Inc.

SAS Institute Inc. (2000), SAS Web Tools: Advanced Dynamic
Solutions Using SAS/IntrNet Software, Course Notes, Cary, NC:
SAS Institute Inc.

SAS Institute Inc. (2000), SAS Web Tools: Static and Dynamic
Solutions Using SAS/IntrNet Software, Course Notes, Cary, NC:
SAS Institute Inc.

ACKNOWLEDGMENTS
We would like to thank the technical support team at SAS for the
assistance provided, especially when things were not working as
expected.

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the authors at:

Sabrina Andrews
Office of Institutional Research
University of Central Florida
P.O. Box 160021
Orlando, FL 32816-0021
Work Phone: (407) 823-5061
Fax: (407) 823-4769
Email: slandrew@mail.ucf.edu
 Web: http://www.iroffice.ucf.edu

Evangeline Collado
Office of Institutional Research
University of Central Florida
P.O. Box 160021
Orlando, FL 32816-0021
Work Phone: (407) 823-5061
Fax: (407) 823-4769
Email: ecollado@mail.ucf.edu
 Web: http://www.iroffice.ucf.edu

Patricia Ramsey
Office of Institutional Research
University of Central Florida
P.O. Box 160021
Orlando, FL 32816-0021
Work Phone: (407) 823-5061
Fax: (407) 823-4769
Email: ramsey@mail.ucf.edu
 Web: http://www.iroffice.ucf.edu

